p-group, metabelian, nilpotent (class 2), monomial
Aliases: C42.266C23, (C2×C8)⋊27D4, C4.41(C4×D4), C4⋊Q8.28C4, C8⋊9D4⋊31C2, C8.128(C2×D4), C22.3(C4×D4), C4⋊D4.18C4, C4⋊1D4.17C4, C4⋊C8.232C22, C42.209(C2×C4), (C2×C8).404C23, (C2×C4).651C24, C4.4D4.15C4, (C4×D4).54C22, C4.197(C22×D4), C4⋊M4(2)⋊34C2, C23.35(C22×C4), C8⋊C4.155C22, C22⋊C8.140C22, C2.15(Q8○M4(2)), (C2×C42).759C22, C22.178(C23×C4), (C22×C4).918C23, (C22×C8).434C22, (C2×M4(2)).348C22, C22.26C24.25C2, C2.49(C2×C4×D4), (C2×C8○D4)⋊22C2, (C2×C8⋊C4)⋊34C2, C4⋊C4.115(C2×C4), C4.302(C2×C4○D4), (C2×C4).844(C2×D4), (C2×D4).137(C2×C4), C22⋊C4.16(C2×C4), (C2×Q8).155(C2×C4), (C22×C8)⋊C2⋊29C2, (C2×C4).684(C4○D4), (C2×C4).262(C22×C4), (C22×C4).341(C2×C4), (C2×C4○D4).286C22, SmallGroup(128,1664)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C42.266C23
G = < a,b,c,d,e | a4=b4=e2=1, c2=b2, d2=a2b, ab=ba, cac-1=a-1, dad-1=ab2, ae=ea, bc=cb, bd=db, be=eb, dcd-1=a2c, ece=b2c, de=ed >
Subgroups: 364 in 242 conjugacy classes, 140 normal (20 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C42, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), C22×C4, C22×C4, C2×D4, C2×Q8, C4○D4, C8⋊C4, C22⋊C8, C4⋊C8, C2×C42, C4×D4, C4⋊D4, C4.4D4, C4⋊1D4, C4⋊Q8, C22×C8, C22×C8, C2×M4(2), C8○D4, C2×C4○D4, C2×C8⋊C4, (C22×C8)⋊C2, C4⋊M4(2), C8⋊9D4, C22.26C24, C2×C8○D4, C42.266C23
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22×C4, C2×D4, C4○D4, C24, C4×D4, C23×C4, C22×D4, C2×C4○D4, C2×C4×D4, Q8○M4(2), C42.266C23
(1 45 32 24)(2 42 25 21)(3 47 26 18)(4 44 27 23)(5 41 28 20)(6 46 29 17)(7 43 30 22)(8 48 31 19)(9 37 51 58)(10 34 52 63)(11 39 53 60)(12 36 54 57)(13 33 55 62)(14 38 56 59)(15 35 49 64)(16 40 50 61)
(1 26 5 30)(2 27 6 31)(3 28 7 32)(4 29 8 25)(9 53 13 49)(10 54 14 50)(11 55 15 51)(12 56 16 52)(17 48 21 44)(18 41 22 45)(19 42 23 46)(20 43 24 47)(33 64 37 60)(34 57 38 61)(35 58 39 62)(36 59 40 63)
(1 15 5 11)(2 50 6 54)(3 9 7 13)(4 52 8 56)(10 31 14 27)(12 25 16 29)(17 57 21 61)(18 37 22 33)(19 59 23 63)(20 39 24 35)(26 51 30 55)(28 53 32 49)(34 48 38 44)(36 42 40 46)(41 60 45 64)(43 62 47 58)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 49)(2 50)(3 51)(4 52)(5 53)(6 54)(7 55)(8 56)(9 26)(10 27)(11 28)(12 29)(13 30)(14 31)(15 32)(16 25)(17 36)(18 37)(19 38)(20 39)(21 40)(22 33)(23 34)(24 35)(41 60)(42 61)(43 62)(44 63)(45 64)(46 57)(47 58)(48 59)
G:=sub<Sym(64)| (1,45,32,24)(2,42,25,21)(3,47,26,18)(4,44,27,23)(5,41,28,20)(6,46,29,17)(7,43,30,22)(8,48,31,19)(9,37,51,58)(10,34,52,63)(11,39,53,60)(12,36,54,57)(13,33,55,62)(14,38,56,59)(15,35,49,64)(16,40,50,61), (1,26,5,30)(2,27,6,31)(3,28,7,32)(4,29,8,25)(9,53,13,49)(10,54,14,50)(11,55,15,51)(12,56,16,52)(17,48,21,44)(18,41,22,45)(19,42,23,46)(20,43,24,47)(33,64,37,60)(34,57,38,61)(35,58,39,62)(36,59,40,63), (1,15,5,11)(2,50,6,54)(3,9,7,13)(4,52,8,56)(10,31,14,27)(12,25,16,29)(17,57,21,61)(18,37,22,33)(19,59,23,63)(20,39,24,35)(26,51,30,55)(28,53,32,49)(34,48,38,44)(36,42,40,46)(41,60,45,64)(43,62,47,58), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,49)(2,50)(3,51)(4,52)(5,53)(6,54)(7,55)(8,56)(9,26)(10,27)(11,28)(12,29)(13,30)(14,31)(15,32)(16,25)(17,36)(18,37)(19,38)(20,39)(21,40)(22,33)(23,34)(24,35)(41,60)(42,61)(43,62)(44,63)(45,64)(46,57)(47,58)(48,59)>;
G:=Group( (1,45,32,24)(2,42,25,21)(3,47,26,18)(4,44,27,23)(5,41,28,20)(6,46,29,17)(7,43,30,22)(8,48,31,19)(9,37,51,58)(10,34,52,63)(11,39,53,60)(12,36,54,57)(13,33,55,62)(14,38,56,59)(15,35,49,64)(16,40,50,61), (1,26,5,30)(2,27,6,31)(3,28,7,32)(4,29,8,25)(9,53,13,49)(10,54,14,50)(11,55,15,51)(12,56,16,52)(17,48,21,44)(18,41,22,45)(19,42,23,46)(20,43,24,47)(33,64,37,60)(34,57,38,61)(35,58,39,62)(36,59,40,63), (1,15,5,11)(2,50,6,54)(3,9,7,13)(4,52,8,56)(10,31,14,27)(12,25,16,29)(17,57,21,61)(18,37,22,33)(19,59,23,63)(20,39,24,35)(26,51,30,55)(28,53,32,49)(34,48,38,44)(36,42,40,46)(41,60,45,64)(43,62,47,58), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,49)(2,50)(3,51)(4,52)(5,53)(6,54)(7,55)(8,56)(9,26)(10,27)(11,28)(12,29)(13,30)(14,31)(15,32)(16,25)(17,36)(18,37)(19,38)(20,39)(21,40)(22,33)(23,34)(24,35)(41,60)(42,61)(43,62)(44,63)(45,64)(46,57)(47,58)(48,59) );
G=PermutationGroup([[(1,45,32,24),(2,42,25,21),(3,47,26,18),(4,44,27,23),(5,41,28,20),(6,46,29,17),(7,43,30,22),(8,48,31,19),(9,37,51,58),(10,34,52,63),(11,39,53,60),(12,36,54,57),(13,33,55,62),(14,38,56,59),(15,35,49,64),(16,40,50,61)], [(1,26,5,30),(2,27,6,31),(3,28,7,32),(4,29,8,25),(9,53,13,49),(10,54,14,50),(11,55,15,51),(12,56,16,52),(17,48,21,44),(18,41,22,45),(19,42,23,46),(20,43,24,47),(33,64,37,60),(34,57,38,61),(35,58,39,62),(36,59,40,63)], [(1,15,5,11),(2,50,6,54),(3,9,7,13),(4,52,8,56),(10,31,14,27),(12,25,16,29),(17,57,21,61),(18,37,22,33),(19,59,23,63),(20,39,24,35),(26,51,30,55),(28,53,32,49),(34,48,38,44),(36,42,40,46),(41,60,45,64),(43,62,47,58)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,49),(2,50),(3,51),(4,52),(5,53),(6,54),(7,55),(8,56),(9,26),(10,27),(11,28),(12,29),(13,30),(14,31),(15,32),(16,25),(17,36),(18,37),(19,38),(20,39),(21,40),(22,33),(23,34),(24,35),(41,60),(42,61),(43,62),(44,63),(45,64),(46,57),(47,58),(48,59)]])
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 4A | 4B | 4C | 4D | 4E | 4F | 4G | ··· | 4N | 8A | ··· | 8H | 8I | ··· | 8T |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 8 | ··· | 8 | 8 | ··· | 8 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | ||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | C4 | D4 | C4○D4 | Q8○M4(2) |
kernel | C42.266C23 | C2×C8⋊C4 | (C22×C8)⋊C2 | C4⋊M4(2) | C8⋊9D4 | C22.26C24 | C2×C8○D4 | C4⋊D4 | C4.4D4 | C4⋊1D4 | C4⋊Q8 | C2×C8 | C2×C4 | C2 |
# reps | 1 | 1 | 2 | 1 | 8 | 1 | 2 | 8 | 4 | 2 | 2 | 4 | 4 | 4 |
Matrix representation of C42.266C23 ►in GL6(𝔽17)
0 | 4 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 8 | 6 | 6 | 14 |
0 | 0 | 0 | 8 | 3 | 0 |
0 | 0 | 0 | 1 | 9 | 0 |
0 | 0 | 16 | 0 | 6 | 9 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 13 | 0 | 0 | 0 |
0 | 0 | 0 | 13 | 0 | 0 |
0 | 0 | 0 | 0 | 13 | 0 |
0 | 0 | 0 | 0 | 0 | 13 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 1 | 11 |
0 | 0 | 16 | 0 | 6 | 1 |
0 | 0 | 0 | 0 | 0 | 16 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 12 | 12 | 7 |
0 | 0 | 0 | 16 | 10 | 0 |
0 | 0 | 0 | 2 | 1 | 0 |
0 | 0 | 15 | 0 | 12 | 1 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 11 |
0 | 0 | 1 | 0 | 11 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
0 | 0 | 0 | 0 | 16 | 0 |
G:=sub<GL(6,GF(17))| [0,4,0,0,0,0,4,0,0,0,0,0,0,0,8,0,0,16,0,0,6,8,1,0,0,0,6,3,9,6,0,0,14,0,0,9],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,13,0,0,0,0,0,0,13,0,0,0,0,0,0,13,0,0,0,0,0,0,13],[1,0,0,0,0,0,0,16,0,0,0,0,0,0,0,16,0,0,0,0,1,0,0,0,0,0,1,6,0,1,0,0,11,1,16,0],[0,16,0,0,0,0,16,0,0,0,0,0,0,0,16,0,0,15,0,0,12,16,2,0,0,0,12,10,1,12,0,0,7,0,0,1],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,11,0,16,0,0,11,0,16,0] >;
C42.266C23 in GAP, Magma, Sage, TeX
C_4^2._{266}C_2^3
% in TeX
G:=Group("C4^2.266C2^3");
// GroupNames label
G:=SmallGroup(128,1664);
// by ID
G=gap.SmallGroup(128,1664);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,1430,184,2019,1018,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^4=b^4=e^2=1,c^2=b^2,d^2=a^2*b,a*b=b*a,c*a*c^-1=a^-1,d*a*d^-1=a*b^2,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d^-1=a^2*c,e*c*e=b^2*c,d*e=e*d>;
// generators/relations